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Abstract. Neural networks (NNs) are increasingly applied in safety-
critical systems such as autonomous vehicles. However, they are fragile
and are often ill-behaved. Consequently, their behaviors should undergo
rigorous guarantees before deployment in practice. In this paper we pro-
pose a set-boundary reachability method to investigate the safety ver-
ification problem of NNs from a topological perspective. Given an NN
with an input set and a safe set, the safety verification problem is to
determine whether all outputs of the NN resulting from the input set
fall within the safe set. In our method, the homeomorphism property
of NNs is mainly exploited, which establishes a relationship mapping
boundaries to boundaries. The exploitation of this property facilitates
reachability computations via extracting subsets of the input set rather
than the entire input set, thus controlling the wrapping effect in reacha-
bility analysis and facilitating the reduction of computation burdens for
safety verification. The homeomorphism property exists in some widely
used NNs such as invertible NNs. Notable representations are invertible
residual networks (i-ResNets) and Neural ordinary differential equations
(Neural ODEs). For these NNs, our set-boundary reachability method
only needs to perform reachability analysis on the boundary of the in-
put set. For NNs which do not feature this property with respect to the
input set, we explore subsets of the input set for establishing the local
homeomorphism property, and then abandon these subsets for reachabil-
ity computations. Finally, some examples demonstrate the performance
of the proposed method.

Keywords: Safe verification · Neural networks · Boundary analysis ·
Homeomorphism.

1 Introduction

Machine learning has seen rapid growth due to the high amount of data produced
in many industries and the increase in computation power. NNs have emerged
? Corresponding author
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as a leading candidate computation model for machine learning, which promote
the prosperity of artificial intelligence in various fields, such as computer vision
[38,7], natural language processing [49,23] and so on. In recent years, NNs are
increasingly applied in safety critical systems. For example, a neural network
has been implemented in the ACAS Xu airborne collision avoidance system for
unmanned aircraft, which is a highly safety-critical system and currently being
developed by the Federal Aviation Administration. Consequently, to gain users’
trust and ease their concerns, it is of vital importance to ensure that NNs are
able to produce safe outputs and satisfy the essential safety requirements before
the deployment.

Safety verification of NNs, which determines whether all outputs of an NN
satisfy specified safety requirements via computing output reachable sets, has
attracted a huge attention from different communities such as machine learning
[29,1], formal methods [19,39,28], and security [41,11]. Because NNs are generally
large, nonlinear, and non-convex, exact computation of output reachable sets is
challenging. Although there are some methods on exact reachability analysis
such as SMT-based [24] and polyhedron-based approaches [43,40], they are usu-
ally time-consuming and do not scale well. Moreover, these methods are limited
to NNs with ReLU activation functions. Consequently, over-approximate reach-
ability analysis, which mainly involves the computation of super sets of output
reachable sets, is often resorted to in practice. The over-approximate analysis
is usually more efficient and can be applied to more general NNs beyond ReLU
ones. Due to these advantages, an increasing attention has been attracted and
thus a large amount of computational techniques have been developed for over-
approximate reachability analysis [27].

Overly conservative over-approximations, however, often render many safety
properties unverifiable in practice. This conservatism mainly results from the
wrapping effect, which is the accumulation of over-approximation errors through
layer-by-layer propagation. As the extent of the wrapping effect correlates strongly
with the size of the input set [44], techniques that partition the input set and
independently compute output reachable sets of the resulting subsets are often
adapted to reduce the wrapping effect, especially for large input sets. Such par-
titioning may, however, produce a large number of subsets, which is generally
exponential in the dimensionality. This will induce extensive demand on compu-
tation time and memory, often rendering existing reachability analysis techniques
not suitable for safety verification of complex NNs in real applications. There-
fore, exploring subsets of the input set rather than the entire input set could help
reduce computation burdens and thus accelerate computations tremendously.

In this work we investigate the safety verification problem of NNs from
the topological perspective and extend the set-boundary reachability method,
which is originally proposed for verifying safety properties of systems modeled
by ODEs in [45], to safety verification of NNs. In [45], the set-boundary reachabil-
ity method only performs over-approximate reachability analysis on the initial
set’s boundary rather than the entire initial set to address safety verification
problems. It was built upon the homeomorphism property of ODEs. This nice
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property also widely exists in NNs, and typical NNs are invertible NNs such as
neural ODEs [5] and invertible residual networks [4]. Consequently, it is straight-
forward to extend the set-boundary reachability method to safety verification of
these NNs, just using the boundary of the input set for reachability analysis
which does not involve reachability computations of interior points and thus re-
ducing computation burdens in safety verification. Furthermore, we extend the
set-boundary reachability method to general NNs via exploiting the local home-
omorphism property with respect to the input set. This exploitation is instru-
mental for constructing a subset of the input set for reachability computations,
which is gained via removing a set of points in the input set such that the NN is a
homeomorphism with respect to them. The above methods of extracting subsets
for performing reachability computations can also be applied to intermediate
layers of NNs rather than just between the input and output layers. Finally, we
demonstrate the performance of the proposed method on several examples.

Main contributions of this paper are listed as follows.

– We investigate the safety verification problem of NNs from the topological
perspective. More concretely, we exploit the homeomorphism property and
aim at extracting a subset of the input set rather than the entire input set
for reachability computations. To the best of our knowledge, this is the first
work on the use of the homeomorphism property to address safety verification
problems of NNs. This might on its own open research directions on digging
into topological properties of facilitating reachability computations for NNs.

– The proposed method is able to enhance the capabilities and performances
of existing reachability computation methods for safety verification of NNs
via reducing computation burdens. Based on the homeomorphism property,
the computation burdens of solving the safety verification problem can be
reduced for invertible NNs. We further show that the computation burdens
can also be reduced for more general NNs via exploiting this property on
subsets of the input set.

2 Related Work

There has been a dozen of works on safety verification of NNs. The first work on
DNN verification was published in [35], which focuses on DNNs with Sigmoid
activation functions via a partition-refinement approach. Later, Katz et al. [24]
and [10] independently implemented Reluplex and Planet, two SMT solvers to
verify DNNs with ReLU activation function on properties expressible with SMT
constraints.

Recently, methods based on abstract interpretation attracts more attention,
which is to propagate sets in a sound (i.e., over-approximate) way [6] and is more
efficient. There are many widely used abstract domains, such as intervals [41],
and star-sets [39]. A method based on zonotope abstract domains is proposed
in [11], which works for any piece linear activation function with great scalabil-
ity. Then, it is further improved [36] for obtaining tighter results via imposing
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abstract transformation on ReLU, Tanh and Sigmoid. [36] proposed special-
ized abstract zonotope transformers for handling NNs with ReLU, Sigmoid and
Tanh activation functions. [37] proposes an abstract domain that combines float-
ing point polyhedra with intervals to over-approximate output reachable sets.
Subsequently, a spurious region guided approach is proposed to infer tighter
output reachable sets [48] based on the method in [37]. [9] abstracts an NN by
a polynomial, which has the advantage that dependencies can in principle be
preserved. This approach can be precise in practice for small input sets. After-
wards, [18] approximates Lipschitz-continuous NNs with Bernstein polynomials.
[20] transforms a neural network with Sigmoid activation functions into a hybrid
automaton and then uses existing reachability analysis methods for the hybrid
automaton to perform reachability computations. [44] proposed a maximum sen-
sitivity based approach for solving safety verification problems for multi-layer
perceptrons with monotonic activation functions. In this approach, an exhaus-
tive search of the input set is enabled by discretizing input space to compute
output reachable set which consists of a union of reachtubes.

Neural ODEs were first introduced in 2018, which exhibit considerable com-
putational efficiency on time-series modeling tasks [5]. Recent years have wit-
nessed an increase use of them on real-world applications [26,17]. However,
the verification techniques for Neural ODEs are rare and still in fancy. The
first reachability technique for Neural ODEs appeared in [16], which proposed
Stochastic Lagrangian reachability, an abstraction-based technique for construct-
ing an over-approximation of the output reachable set with probabilistic guaran-
tees. Later, this method was improved and implemented in a tool GoTube [15],
which is able to perform reachability analysis for long time horizons. Since these
methods only provide stochastic bounds on the computed over-approximation
and thus cannot provide formal guarantees on the satisfaction of safety proper-
ties, [30] presented a deterministic verification framework for a general class of
Neural ODEs with multiple continuous- and discrete-time layers.

Based on entire input sets, all the aforementioned works focus on develop-
ing computational techniques for reachability analysis and safety verification of
appropriate NNs. In contrast, the present work shifts this focus to topological
analysis of NNs and guides reachability computations on subsets of the input set
rather than the entire input set, reducing computation burdens and thus increas-
ing the power of existing safety verification methods for NNs. Although there
are studies on topological properties of NNs [4,8,34], there is no work on the
utilization of homeomorphism property to analyze their reachability and safety
verification problems, to the best of our knowledge.

3 Preliminaries

In this section, we give an introduction on the safety verification problem of
interest for NNs and homeomorphisms. Throughout this paper, given a set ∆,
∆◦, ∂∆ and ∆ respectively denotes its interior, boundary and the closure.
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NNs, also known as artificial NNs, are a subset of machine learning and are
at the heart of deep learning algorithms. It works by using interconnected nodes
or neurons in a layered structure that resembles a human brain, and is generally
composed of three layers: an input layer, hidden layers and an output layer.
Mathematically, it is a mathematical function N(·) : Rn → Rm, where n and m
respectively denote the dimension of the input and output of the NN.

3.1 Problem Statement

Given an input set Xin, the output reachable set of an NN N(·) : Rn → Rm is
stated by the following definition.

Definition 1. For a given neural network N(·) : Rn → Rm, with an input set
Xin ⊆ Rn, the output reachable set R(Xin) is defined as

R(Xin) = {y ∈ Rm | y = N(x), x ∈ Xin}.

The safety verification problem is formulated in Definition 2.

Definition 2 (Safety Verification Problem). Given a neural network N(·) :
Rn → Rm, an input set Xin ⊆ Rn which is compact, and a safe set Xs ⊆ Rm

which is simply connected, the safety verification problem is to verify that

∀x0 ∈ Xin. N(x0) ∈ Xs.

In topology, a simply connected set is a path-connected set where one can
continuously shrink any simple closed curve into a point while remaining in it.
The requirement that the safe set Xs is a simply connected set is not strict,
since many widely used sets such as intervals, ellipsoids, convex polyhedra and
zonotopes are simply connected.

Obviously, the safety property that ∀x0 ∈ Xin. N(x0) ∈ Xs holds if and
only if R(Xin) ⊆ Xs. However, it is challenging to compute the exact output
reachable set R(Xin) and thus an over-approximation Ω(Xin), which is a super
set of the setR(Xin) (i.e.,R(Xin) ⊆ Ω(Xin)), is commonly resorted to in existing
literature for formally reasoning about the safety property. If Ω(Xin) ⊆ Xs, the
safety property that ∀x0 ∈ Xin. N(x0) ∈ Xs holds.

3.2 Homeomorphisms

In this subsection, we will recall the definition of a homeomorphism, which is a
map between spaces that preserves all topological properties.

Definition 3. A map h : X → Y with X ,Y ⊆ Rn is a homeomorphism with
respect to X if it is a continuous bijection and its inverse h−1(·) : Y → X is also
continuous.

Homeomorphisms are continuous functions that preserve topological proper-
ties, which map boundaries to boundaries and interiors to interiors [32].
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X Y

(a) A homeomorphic map

X Y

(b) A non-homeomorphic map

Fig. 1. Homeomorphic and non-homeomorphic maps

Proposition 1. Suppose sets X ,Y ⊆ Rn are compact. If a map h(·) : X → Y
is a homeomorphism, then h maps the boundary of the set X onto the boundary
of the set Y, and the interior of the set X onto the interior of the set Y.

Based on this property, [45] proposed a set-boundary reachability method
for safety verification of ODEs, via only propagating the initial set’s boundary.
Later, this method was extended to a class of delay differential equations [47].

4 Safety Verification Based on Boundary Analysis

In this section we introduce our set-boundary reachability method for addressing
the safety verification problem in the sense of Definition 1. We first consider
invertible NNs in Subsection 4.1, and then extend the method to more general
NNs in Subsection 4.2.

4.1 Safety Verification on Invertible NNs

In this subsection we introduce our set-boundary reachability method for safety
verification on invertible NNs, which relies on the homeomorphism property of
these NNs.

Invertible NNs, such as i-RevNets [21], RevNets [13], i-ResNets [4] and Neu-
ral ODEs [5], are NNs with invertibility by designed architectures, which can
reconstruct inputs from their outputs. These NNs are continuous bijective maps.
Based on the facts that Xin is compact, they are homeomorphisms [Corollary
2.4, [22]]3. In existing literature, many invertible NNs are constructed by requir-
ing their Jacobian determinants to be non-zero [3]. Consequently, based on the
inverse function theorem [25], these NNs are homeomorphisms. In the present
work, we also use Jacobian determinants to justify the invertibility of some NNs.
It is noteworthy that Jacobian determinants being non-zero is a sufficient but
not necessary condition for homeomorphisms and the reason why we resort to
this requirement lies in the simple and efficient computations of Jacobian deter-
minants with interval arithmetic. However, this demands the differentiability of

3 A continuous bijection from a compact space onto a Hausdorff space is a homeomor-
phism. (Euclidean space and any subset of Euclidean space is Hausdorff.)
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Algorithm 1 Safety Verification Framework for Invertible NNs Based on Bound-
ary Analysis
Input: an invertible NN N(·) : Rn → Rn, an input set Xin and a safe set Xs.
Output: Safe or Unknown.
1: extract the boundary ∂Xin of the input set Xin;
2: apply existing methods to compute an over-approximation Ω(∂Xin);
3: if Ω(∂Xin) ⊆ Xs then
4: return Safe
5: else
6: return Unknown
7: end if

NNs. Thus, this technique of computing Jacobian determinants to determining
homeomorphisms is not applicable to NNs with ReLU activation functions.

Based on the homeomorphism property of mapping the input set’s boundary
onto the output reachable set’s boundary, we propose a set-boundary reachability
method for safety verification of invertible NNs, which just performs the over-
approximate reachability analysis on the input set’s boundary. Its computation
procedure is presented in Algorithm 1.

Remark 1. In the second step of Algorithm 1, we may take partition operator
on the input set’s boundary to refine the computed over-approximation for ad-
dressing the safety verification problem.

Theorem 1 (Soundness). If Algorithm 1 returns Safe, the safety property in
the sense of Definition 1 holds.

Proof. It is equivalent to show that if R(∂Xin) ⊆ Xs,

∀x0 ∈ Xin. N(x0) ∈ Xs.

The conclusion holds by Lemma 3 in [45].

In order to enhance the understanding of Algorithm 1 and its benefits, we
use a sample example to illustrate it.

Example 1. Consider an NN from [44], which has 2 inputs, 2 outputs and 1
hidden layer consisting of 5 neurons. The input set is Xin = [0, 1]2. Its boundary
is ∂Xin = ∪4i=1Bi, where B1 = [0, 0]× [0, 1], B2 = [1, 1]× [0, 1], B3 = [0, 1]× [0, 0]
and B4 = [0, 1] × [1, 1]. The activation functions for the hidden layer and the
output layer are Tanh and Purelin functions, respectively, whose weight matrices
and bias vectors can be found in Example 1 in [44]. For this neural network, based
on interval arithmetic, we can show that the determinant of the Jacobian matrix
∂y
∂x0

= ∂N(x0)
∂x0

is non-zero for any x0 ∈ Xin. Therefore, this NN is invertible and
the map N(·) : Xin → R(Xin) is a homeomorphism with respect to the input
set Xin, leading to R(∂Xin) = ∂R(Xin). This statement is also verified via the
visualized results in Fig. 2(a).
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The homeomorphism property facilitates the reduction of the wrapping effect
in over-approximate reachability analysis and thus reduces computation burdens
in addressing the safety verification problem in the sense of Definition 1. For this
example, with the safe set Xs = [−3.85,−1.85] × [−0.9, 1.7], we first take the
input set and its boundary for reachability computations. Based on interval
arithmetic, we respectively compute over-approximations Ω(Xin) and Ω(∂Xin),
which are illustrated in Fig. 2(b). Although the approximation Ω(∂Xin) is in-
deed smaller than Ω(Xin), it still renders the safety property unverifiable. We
next take partition operator for more accurate reachability computations. If the
entire input set is used, we can successfully verify the safety property when the
entire input set is divided into 104 small intervals of equal size. In contrast, our
set-boundary reachability method just needs 400 equal partitions on the input
set’s boundary, significantly reducing the computation burdens. The reachability
results, i.e., the computation of Ω(∂Xin), are illustrated in Fig. 2(c).

(a) R(Xin) and R(∂Xin)
estimated via Monte-Carlo
method
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(b) ∂Ω(Xin); Ω(∂Xin); ∂Xs (c) Ω(Xin); Ω(∂Xin); ∂Xs

Fig. 2. Illustrations on Example 1

4.2 Safety Verification on Non-invertible NNs

When an NN has the homeomorphism property, we can use Algorithm 1 to
address the safety verification problem in the sense of Definition 1. However,
not all of NNs have such a nice property. In this subsection we extend the set-
boundary reachability method to safety verification of non-invertible NNs, via
analyzing the homeomorphism property of NNs with respect to subsets of the
input set Xin.

Example 2. Consider an NN from [42], which has 2 inputs, 2 outputs and 1
hidden layer consisting of 7 neurons. The input set is Xin = [−1, 1]2. The activa-
tion functions for the hidden layer and the output layer are Tanh and Purelin

functions, respectively, whose weight matrices and bias vectors can be found in



Safety Verification for Neural Networks Based on Set-boundary Analysis 9

Example 4.3 in [42]. For this neural network, the boundary of the output reach-
able set, i.e.,∂R(Xin), is not included in the output reachable set of the input
set’s boundary R(∂Xin). This statement is visualized in Fig. 3(a).

Example 2 presents us an NN, whose mapping does not admit the homeo-
morphism property with respect to the input set and the output reachable set.
However, the NN may feature the homeomorphism property with respect to a
subset of the input set. This is illustrated in Example 3.

Example 3. Consider the NN in Example 2 again. We divide the input set Xin

into 4× 104 small intervals of equal size and verify whether the NN is a homeo-
morphism with respect to each of them based on the use of interval arithmetic to
determine the determinant of the corresponding Jacobian matrix ∂y

∂x0
= ∂N(x0)

∂x0
.

The blue region in Fig. 3(b) is the set of intervals, which features the NN with the
homeomorphism property. The number of these intervals is 31473. For simplicity,
we denote these intervals by A.

(a) R(Xin); R(∂Xin) (b) Set A (c) Ω(Xin); Ω(Xin \ A)

Fig. 3. Illustrations on Example 2, 3 and 4

It is interesting to find that the safety verification in the sense of Definition
1 can be addressed by performing reachability analysis on a subset of the input
set Xin. This subset is obtained via removing subsets in the input set Xin, which
features the NN with the homeomorphism property.

Theorem 2. Let A ⊆ Xin and A ∩ ∂Xin = ∅, and N(·) : A → R(A) be a
homeomorphism with respect to the input set A. Then, if the output reachable set
of the closure of the set Xin \A is a subset of the safe set Xs, i.e., R(Xin \ A) ⊆
Xs, the safety property that ∀x0 ∈ Xin. N(x0) ∈ Xs holds.

Proof. Obviously, if R(A) ⊆ Xs and R(Xin \ A) ⊆ Xs, the safety property that
∀x0 ∈ Xin. N(x0) ∈ Xs holds.

According to Theorem 1, we have that if R(∂A) ⊆ Xin, the safety property
that ∀x0 ∈ A. N(x0) ∈ Xs holds.

According to the condition that A ⊆ Xin and A ∩ ∂Xin = ∅, we have that
A ⊆ X ◦in and thus ∂A ⊆ Xin \ A. Therefore, R(Xin \ A) ⊆ Xs implies that
∀x0 ∈ Xin. N(x0) ∈ Xs. The proof is completed.
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Algorithm 2 Safety Verification Framework for Non-Invertible NNs
Input: a non-invertible NN N(·) : Rn → Rn, an input set Xin and a safe set Xs.
Output: Safe or Unknown.
1: determine a subset A of the set Xin such that N(·) : Rn → Rn is a homeomorphism

with respect to it;
2: apply existing methods to compute an over-approximation Ω(Xin \ A);
3: if Ω(Xin \ A) ⊆ Xs then
4: return Safe
5: else
6: return Unknown
7: end if

Theorem 2 tells us that it is still possible to use a subset of the input set for
addressing the problem in Definition 1, even if the given NN is not a homeomor-
phism with respect to Xin. This is shown in Example 4.

Example 4. Consider the situation in Example 3 again. If the entire input set is
used for computations, all of 4× 104 small intervals participate in calculations.
However, Theorem 2 tells us that only 9071 intervals (i.e., subset Xin \ A) are
needed, which is much smaller than 4× 104. The computation results based on
interval arithmetic are illustrated in Fig. 3(c). It is noting that 9071 intervals
rather than 8527(= 4 × 104 − 31473) intervals are used since some intervals,
which have non-empty intersection with the boundary of the input set Xin (since
Theorem 2 requires A ∩ ∂Xin = ∅), should participate in calculations.

Remark 2. According to Theorem 2, we can also observe that the boundary
of the output reachable set R(Xin) is included in the output reachable set of
the input set Xin \ A, i.e., ∂R(Xin) ⊆ R(Xin \ A). This can also be visualized
in Fig. 3(c). Consequently, this observation may open new research directions
of addressing various problems of NNs [12]. For instance, it may facilitate the
generation of adversarial examples, which are inputs causing the NN to falsify the
safety property, and the characterization of decision boundaries of NNs, which
are a surface that separates data points belonging to different class labels.

Therefore, we arrive at an algorithm for safety verification of non-invertible
NNs, which is formulated in Algorithm 2.

Theorem 3 (Soundness). If Algorithm 2 returns Safe, the safety property
that ∀x0 ∈ Xin. N(x0) ∈ Xs holds.

Proof. This conclusion can be assured by Theorem 2.

Remark 3. The set-boundary reachability method can also be applied to inter-
mediate layers in a given NN, rather than just the input and output layers.
Suppose that there exists a sub-NN N ′(·) : Rn′ → Rn′

, which maps the input
of the l-th layer to the output of the k-th layer, in the given NNs, and its in-
put set is X ′in which is an over-approximation of the output reachable set of
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the (l − 1)-th layer. If N ′(·) : Rn′ → Rn′
is a homeomorphism with respect to

X ′in, we can use ∂X ′in to compute an over-approximation Ω′(∂X ′in) of the output
reachable set {y | y = N ′(x0),x0 ∈ ∂X ′in}; otherwise, we can apply Theorem
2 and compute an over-approximation Ω′(X ′in \ A) of the output reachable set
{y | y = N ′(x0),x0 ∈ X ′in \ A}. In case that the k-th layer is not the out-
put layer of the NN, we need to construct a simply connected set, like convex
polytope, zonotope or interval, to cover Ω′(∂X ′in) or Ω′(X ′in \ A) for the subse-
quent layer-by-layer propagation. This set is an over-approximation of the output
reachable set of the k-th layer, according to Lemma 1 in [46].

Remark 4. Any existing over-approximate reachability methods such as interval
arithmetic- [41], zonotopes- [36], star sets [39] based methods, which are suitable
for given NNs, can be used to compute the involved over-approximations, i.e.,
Ω(∂Xin) and Ω(Xin \ A), in Algorithm 1 and 2.

5 Experiment

In this section, several examples of NNs are used to demonstrate the performance
of the proposed set-boundary reachability method for safety verification. Exper-
iments are conducted on invertible NNs and non-invertible ones respectively.
Recall that the proposed set-boundary method is applicable for any reachability
analysis algorithm based on set representation, resulting in tighter and verifiable
over-approximations when existing approaches fail. Thus, we compare the set-
boundary method versus the entire set one on some existing reachability tools
in terms of efficiency.
Experiment Setting. All the experiments herein are run on MATLAB 2021a
with Intel (R) Core (TM) i7-10750H CPU@2.60 GHz and RAM 16 GB. The
codes and models are available from https://github.com/laode2022/BoundaryNN.

5.1 Experiments on Invertible NNs

In this subsection, we carry out some examples involving neural ODEs and in-
vertible feedforward neural networks.
Neural ODEs. We experiment on two widely-used neural ODEs in [31], which
are respectively a nonlinear 2-dimensional spiral [5] with the input set Xin =
[1.5, 2.5]× [−0.5, 0.5] and the safe set Xs = [−0.08, 0.9]× [−1.5,−0.3] and a 12-
dimensional controlled cartpole [14] with the input set Xin = [−0.001, 0.001]12
and the safe set Xs = [0.0545, 0.1465]× [0.145, 0.725]. For simplicity, we respec-
tively denote themN1 andN2. Here, we take zonotopes as abstract domains and
compare the output reachable sets computed by our set-boundary reachability
method and the entire input set based method. The over-approximate reachabil-
ity analysis is performed on the continuous reachability analyzer CORA toolbox
[2]. When the time horizon is [0, 6] and the time step is 0.01, our set-boundary
reachability method for N1 returns ‘Safe’ when the boundary of the input set is
partitioned into 16 equal subsets, with the computation time being about 220.83

https://github.com/laode2022/BoundaryNN
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Fig. 4. Verification on N1, N2. Ω(∂Xin); Ω(Xin); ∂Xs

seconds. However, the entire input set based method returns ‘Unknown’ when
the input set is partitioned into 16 equal subsets. These color marks for safety
verification results also apply to the experiments below. The safety property is
verified until the entire input set is partitioned into 49 equal subsets. The cor-
responding computation time is 671.32 seconds. Consequently, the computation
time from our set-boundary reachability method is reduced by 67.1%, compared
to the entire input set based method. The computed output reachable sets for
N1 are displayed in Fig. 4(a) and 4(b). When the time horizon is [0.0, 1.1] and
the time step is 0.01, the computed output reachable sets for N2 are displayed
in Fig. 4(c). Fig. 4(d) shows the reachable sets at the time instant t = 1.1.
Feedforward Neural Networks. Rather than considering neural ODEs, we
instead take more general invertible NNs into account. The invertibility of NNs
used here, i.e., N3 and N4, are assured by their Jacobian determinant not being
zero. The NN N3 is fully connected with Sigmoid activation functions, having
an input/output layer with dimension 2 and 10 hidden layers with size 100. The
NN N4 is similar to N3, except that its input/output dimensions are 3.

The results of safety verification ofN3 andN4 are demonstrated in Fig. 5 and
6. Their safe sets Xs are respectively [0.914304, 0.9143525]×[0.9508425, 0.950896]
and [0.2884, 0.289]× [0.465, 0.466]× [0.5752, 0.5762], whose boundaries are shown
in green color in Fig. 5 and 6. The input sets in Fig. 5 are [−0.125, 0.125]2,
[−0.25, 0.25]2, [−0.375, 0.375]2, [−0.425, 0.425]2 and [−1.0, 1.0]2 (Fig. 5(e)-5(f).)
respectively and those of Fig. 6 are [−0.25, 0.25]3, [−0.30, 0.30]3, [−0.375, 0.375]3.
The over-approximate reachability analysis is implemented using DeepZ [36],
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(a) ε = 0.125, Safe, Safe (b) ε = 0.250, Safe, Safe

(c) ε = 0.375, Safe, Unknown (d) ε = 0.425, Safe, Unknown

(e) 5× 4 Vs. 52. Safe, Unknown (f) 5× 4 Vs. 82. Safe, Safe

Fig. 5. Safety verification on N3. Ω(∂Xin); Ω(Xin); ∂Xs

which is a tool for safety verification of large feed-forward, convolutional, and
residual networks via propagating zonotopes through networks.

The output reachable sets from our set-boundary reachability method and
the entire set based method are displayed in blue and red in Fig. 5 and 6,
respectively. Further, we also show the exact output reachable sets estimated
via the Monte-Carlo simulation method in Fig. 5 and 6, which correspond to the
yellow regions. The visualized results show that the set-boundary reachability
method can generate tighter output reachable sets than the entire set based
method. As a result, our set-boundary reachability method can verify the safety
properties successfully for all cases. In contrast, the entire set based method fails
for large input sets, as shown in Fig. 5(c), 5(d), 6(d)-6(f) and 6(g)-6(i), since
the computed output reachable sets are not included in safe sets. Furthermore,
when the safety property cannot be verified with the input set [−1.0, 1.0]2, we
impose uniform partition operator on both the entire input set and its boundary
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(a) y1 − y2 (b) y1 − y3 (c) y2 − y3
ε = 0.250, Safe, Safe

(d) y1 − y2 (e) y1 − y3 (f) y2 − y3.
ε = 0.300, Safe, Unknown

(g) y1 − y2 (h) y1 − y3 (i) y2 − y3
ε = 0.375, Safe, Unknown

Fig. 6. Safety verification on N4. Ω(∂Xin); Ω(Xin); ∂Xs

for verifying the safety property. When the boundary is divided into 20 equal
subsets, the safety verification can be verified using our set-boundary reachability
method (Fig. 5(e)) with the computation time of 0.0624 seconds. However, when
the entire input set is used, it should be partitioned into 64 equal subsets (Fig.
5(f)) and the computation time for verification is 0.7405 seconds. Consequently,
the computation time from our set-boundary reachability method is reduced by
91.6%, as opposed to the entire input set based method.

5.2 Experiments on Non-invertible NNs

When homeomorphisms cannot be assured with respect to given input regions,
our method is also able to facilitate the extraction of subsets from the input
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region for safety verification, as done in Algorithm 2. In this subsection, we
experiment on a non-invertible NN N5, which shares the same structure with
N3. The input set Xin and safe set Xs are [−0.5, 0.5]2 and [0.06546, 0.06555] ×
[0.07828, 0.07832], respectively. Then, based on the tool DeepZ, we follow the
computational procedure in Algorithm 2 for verifying the safety property. The
computed output reachable sets and the verification result are shown in Fig. 7.
The subset A = [−0.45, 0.3]2 rendering the NN homeomorphic is illustrated in
Fig. 7(a), which is the orange region, and the subset Xin \ A is the blue region in
Fig. 7(a). It can be seen that the subset A extracted by set-boundary analysis for
safety verification covers only 56.25% of the initial input set. The output reach-
able set computed from the entire input set is also displayed in Fig.7(b), which
correspond to the red region. Moreover, the boundary of the safe region and
the output reachable set estimated via the Monte-Carlo simulation method are
shown in green and yellow in Fig.7(b), respectively. It can be observed that our
set-boundary reachability method facilitates the generation of a tighter output
reachable set, which is included in the safe set Xs. Thus, the safety property is
ensured by our set-boundary reachability method. However, the entire set based
method fails. Moreover, the computation time of safe verification on N5 based
on our set-boundary reachability method is 0.0459 seconds, while the verification
time from the entire set based method takes 0.0522 seconds with 4 equal subsets.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
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0.3

0.4
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x
2

(a) Xin: A ∪Xin \ A (b) Verification: Safe, Unknown. Ω(Xin \ A);
Ω(Xin); ∂Xs

Fig. 7. Safety verification on N5

6 Conclusion

In this paper we proposed a set-boundary reachability method to verify safety
property of NNs. Different from existing works on developing computational
techniques for output reachable sets estimation of NNs, the set-boundary reach-
ability method analyzed the reachability from the topology point of view. Based
on homeomorphism property, this analysis took a careful inspection on what
happens at boundaries of input sets, and uncovered that the homeomorphism
property facilitates the reduction of computational burdens on safety verifica-
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tion of NNs. Several examples demonstrated the performance of the proposed
method.

There are a lot of works remaining to be done in order to render the pro-
posed approach more practical. For instance, in this paper a homeomorphism is
determined via the use of interval arithmetic to calculate the determinant of the
Jacobian matrix. Such an interval estimation is coarse, which affects the deter-
mination of a homeomorphism and thus the extraction of the small subset for
reachability computations. In the future we will develop more efficient and ac-
curate methods for calculating Jacobian matrices. Besides, the homeomorphism
property may be strict. Different from homeomorphisms, open maps, mapping
open sets to open sets [33], can also ensure that the output reachable set’s bound-
ary corresponds to the input’s boundary. Moreover, the open mapping condition
is weaker than the one for a homeomorphism. Consequently, in future work we
would exploit the open mapping property to facilitate reachability computations
for safety verification.
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